Boundedness of the Cesàro operator on mixed norm spaces
نویسندگان
چکیده
منابع مشابه
Boundedness of the Bergman Type Operators on Mixed Norm Spaces
Conditions sufficient for boundedness of the Bergman type operators on certain mixed norm spaces Lp,q(φ) (0 < p < 1, 1 < q <∞) of functions on the unit ball of Cn are given, and this is used to solve Gleason’s problem for the mixed norm spaces Hp,q(φ) (0 < p < 1, 1 < q <∞).
متن کاملOn the boundedness of the Marcinkiewicz operator on multipliers spaces
Let h(y) be a bounded radial function and Ω (y) an H function on the unit sphere satisfying the cancelation condition. Then the Marcinkiewicz integral operator μΩ related to the Littlewood-Paley g−function is defined by
متن کاملOn an Integral-type Operator from Mixed Norm Spaces to Zygmund-type Spaces (communicated by Professor
This paper studies the boundedness and compactness of an integraltype operator from mixed norm spaces to Zygmund-type spaces and little Zygmund-type spaces.
متن کاملDefinition and Properties of the Libera Operator on Mixed Norm Spaces
We consider the action of the operator ℒg(z) = (1 - z)(-1)∫ z (1)f(ζ)dζ on a class of "mixed norm" spaces of analytic functions on the unit disk, X = H α,ν (p,q) , defined by the requirement g ∈ X ⇔ r ↦ (1 - r) (α) M p (r, g ((ν))) ∈ L (q) ([0,1], dr/(1 - r)), where 1 ≤ p ≤ ∞, 0 < q ≤ ∞, α > 0, and ν is a nonnegative integer. This class contains Besov spaces, weighted Bergman spaces, Dirichlet...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1998
ISSN: 0002-9939,1088-6826
DOI: 10.1090/s0002-9939-98-04514-6